A REMOTE WELDING TECHNIQUE FOR HIGH EXPLOSIVES CONTAINERS

Richard A. Hildner
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

Abstract

Samples of high explosives for environmental testing have been successfully enclosed in all-welded assemblies. Proper container design, fixturing, welding power supply, and welding parameters ensure the safe, timely completion of the task.

INTRODUCTION

High costs associated with the machining and fabrication of conventional containers for compatibility experiments stimulated a search to develop different techniques. The all-welded container is a result of these studies.

Samples of high explosives for environmental testing have been successfully enclosed in welded assemblies. The design and welding technique allow the containers to be reused several times. The atmosphere in the containers can be sampled as required either by attaching a valve or by using a pinch-seal tube. Proper container design, fixturing, welding power supply, and welding parameters ensure the safe, successful completion of the task. Figure 1 shows some all-welded compatibility experiments in an oven.

The containers are 127 mm (5 in.) diameter and have various lengths. Different types of containers are shown in Fig. 2. The

Figure 1
containers are made from 1 mm and 1.7 mm (0.040 in. and 0.065 in.) welded-wall Type 304, 316 or 321 stainless-steel tubing. The tubing is cut to length, and the ends are flared to give a 21 mm (13/16 in.) wide flange on each end. The flanging die set is shown in Fig. 3. End caps are made from 1.7 mm or 2.4 mm ($1 / 16 \mathrm{in}$. or $3 / 52 \mathrm{in)}$. flat stock blanked out of sheets.

Figure 2

Figure 3
The welding fixture, shown in Fig. 4, is a rotary table modified for added stability and remote operation. The joints are meltdown welds and require no filler rod. The torch is positioned 15° from vertical and is perpendicular to the horizontal axis of rotation. A Linde Model HW-17 air-cooled torch is positioned by a roller follower to maintain correct electrode location relative to the weld joint.

Figure 4
The welding power supply is shown in Fig. It is a Miller Gold Star Model A/BP. The machine is run in the $D C$ straight-polarity mode. The amperage control is set at the "local" position, and the contactor control is set at the "remote" position. A Varian Model Gl0 recorder records the weld ing amperage as a function of time to ensure the reproducibility of weld conditions The welding torch and ground cables are run through the shield wall between the

Figure 5
operator and operations area. The operator watches the welding operation through the viewing port, using a mirror. The building in which the welding operation is located is designed to protect the operator from an accidental detonation. The welding power supply is locked out when the operator is in the operations room. The remote welding contactor switch is interlocked so that the welding fixture must be rotating before the torch can be turned on.

Copper chill blocks are used to minimize heat conduction into the walls of the container. The chill blocks are designed to provide uniform cooling of the weld joint. As an added safety precaution, they are large enough to handle the point deposition of heat from an entire weld cycle if the fixture fails to rotate. Polyethylene inserts (Fig. 2) are used when possible to isolate the experiment from contact with the metal container.

Test welds are made and temperature profiles along the inner surfaces of the containers are measured to determine the maximum temperature to which the contents of the container can be exposed. A welding procedure is developed for each specific assembly, based on the results of these tests. The procedure must be approved by the experimenter, the welding engineer, and an independent group safety expert. A sample LASL WX-2 welding procedure is shown in Fig. 6.

Container lids are designed with a valve, pinch-tube or electrical connectors as required, depending on the type of test. Pinch-tube welding is shown in Fig. 7.

The containers are opened in the inert glove box shown in Fig. 8, using a modified Fein nibbler. The weld is uniformly nib-
bled away so that the container may be reused.

This seal-welding has developed into a production method that promises to reduce the cost of compatibility tests. About 70% of the containers welded are sealed with one welding pass. Twenty-five per cent require two weld passes (note that the weld and chill blocks must be cool before the second pass). The remaining five per cent require additional passes to obtain a leak-tight seal.

The need for repeated welding passes, to obtain a leak-tight seal can be attributed to poor fit-up of the pieces, misalignment of the torch, and misadjustments during the welding setup.

Problems with poor fit-up have been solved by requiring more uniform flanges and lids. The roller follower has been modified to eliminate riding up on the flange and bending of the guide pins that have caused weld skip in the past.

The welded container makes the environmental testing of explosives considerably cheaper. Assembly of the experiments is fairly fast, reliable, and safe. Future work will be directed toward improving the flanging dies and speeding up production.

BIOGRAPHY

Richard A. Hildner graduated with a BSME in 1967. Mr. Hildner worked for Battelle Northwest on nuclear reactor experimental thermal hydraulics. When WADCO (later known as Westinghouse Hanford Co.) took over the Fast Flux Test Facility in 1970, Mr. Hikiner went to work for Test Engineering and Expediting as a project engineer, testing materials for use in fast flux reactor
los alamos
scientific laboratory of the University of Californip
P.O. Box-1663, Los Alamos, N.M. GROUP WX-2

PROCEDURE NO. WX-Z-I
WELDING PROCEDURE
remote gas tungsten arc welding process

BASE MATERIAL \& FORM 304 , $3 / 6$ oo 321 SST-RT/ / Pam NO. PASSES At rend bat myst have 5 MTinefiechls.e
 HEAT TREAT. NONE,
FIT-UP METHOD Son bray hod ed heat Sent COLLET SIZE NA
WELD POSITION Vertical
$\frac{\text { GAS \& FLOW RATE (AFB) }}{\text { SHIELD } 15}$
PURGE AloNE
LAP-OVER $30^{\circ}(\operatorname{tin} 2 \times 1,0 B)$
" TYPE BACKING CU HEAT SPARS
 GATS CUP SIZE $N_{0} 7$ GAS LENS WELDING CURRENT \& POLARITY $1 / 0$ /us on 2 DC Smew WELDING MACHINE 110 . Miller Gold ster, $12223 t$ WELDING HEAD NO. LINE $4 \omega-17$ ELECTRODE TIP ANGLE 8 to 10° ELECTRODE TIP DIAMETER $\cdot \theta / \frac{1}{T}, 025$ ADDTIONAL REMARKS: Mri' Col between passes - 5 minutes. CEAVE on Heat Sinks or minutes. Cool then sinks with ho betorerix:

PROCESS VALUES

Figure 6

Figure 7
environments. Mr. Hildner joined the Los Alamos Scientific Laboratory in 1973 as a staff member, working on a Transuranic waste Incineration system. Later he joined Group WX-2 at LASL as group mechanical engineer responsible for special devices used in the synthesis and testing of explosive and weapon components.

Figure 8

